EXORCISING T}{E

/
”

How Ghost is Replacing Rule-Based
Scanning with AI-Powered Triage
and Detection.

A Report By Ghost Security

<) ghost

ghost

Ghost Report: Exorcising the SAST Demons

1. EXECUTIVE SUMMARY

TRADITIONAL SAST IS FAILING SECURITY AND ENGINEERING TEAMS,
WASTING HUNDREDS OF HOURS FOR MINIMAL SECURITY VALUE.

Ghost Security scanned nearly 3,000 real-world open-source
repositories across Go, Python, and PHP to test how well traditional Why Al Triage Isn't
static application security testing (SAST) tools hold up at scale. Plug-and-Play

The results were staggering:
Al isn't a silver bullet for

SAST triage. You can't just
throw raw findings at a
language model and expect
useful results. Precision

» 2116 potential security findings were flagged.

o Over 91% were false positives—alerts with no real risk.

» Manual triage would've taken more than 350 hours for just 180
true positives.

This isn't just inefficient. It's unsustainable. requires more:

Security teams are drowning in alerts. As development velocity Vulnerability-specific

accelerates, legacy SAST tools flood teams with low-signal noise, most of prompts

it false positives. AppSec and engineering teams spend hours chasing Framework-aware

dead ends instead of delivering value to their customers. Meanwhile, real context

risks slip through the cracks. Reasoning that mirrors

expert judgment

Our research shows that Al-powered validation, when context-aware, can Signal enrichment and

eliminate this toil, accelerate triage, and help teams focus on real risks. By static/runtime cues

combining pattern detection with reasoning about exploitability, we Examples, examples,

reduce noise and spotlight what matters. examples

This study scanned over 2,800 repos across Go (Gin), Python (Flask), It's not about using Al; it's

and PHP (Laravel), comparing manual triage with Al-assisted validation. about how you structure,
tune, and apply it to the

What we uncovered reveals a critical insight: R0 LR & el problem. Ghost's approach

security isn’t just about identifying patterns. It's about understanding layers all of the above into

WA Traditional SAST tools operate on syntax; effective Al-powered specialized Al agents

validation operates on semantics, intent, and risk. engineered to analyze
findings, call supporting

Consider this: in Python/Flask projects, nearly 99.5% of flagged command tools, and make informed,

injection issues were false positives. That's thousands of misleading alerts context-aware decisions

—each demanding analyst review with little to no value in return. By autonomously.
contrast, our Al-assisted triage slashed review time while preserving
detection quality, saving more than 350 hours across just three
vulnerability classes.

And that’s just the beginning. The opportunity isn’t only in reducing toil—
it's in rethinking detection from the ground up. Pattern-matching alone
can’'t detect the vulnerabilities that matter most. The future belongs to
systems that understand code, behavior, and context. That's what Ghost
is building with Contextual Application Security Testing (CAST).

ghost

2. BACKGROUND

Modern development moves fast. CI/CD pipelines and Al coding
assistants let teams ship multiple times a day. But this velocity comes
at a cost: keeping code secure at scale is harder than ever.

To keep up, most AppSec teams rely on static application security
testing (SAST) and software composition analysis (SCA) tools to catch
vulnerabilities before code hits production. In theory, these tools
prevent risky code from reaching production. In practice, they flood
teams with noisy alerts and endless manual triage.

At Ghost, we wanted to quantify just how painful that process can be.
We ran traditional SAST scans across more than 100 of our internal
repositories and the results were worse than we expected:

» Nearly 5,000 findings were flagged—an overwhelming volume.
It typically took 10-60 minutes to validate a single finding.
Most were rated High or Critical, but due to mitigating controls or

unreachable code, nearly all were non-issues.

Tuning the rulesets was time-consuming, risky, and unreliable.

In the end, fewer than a dozen findings were worth fixing.

The experience delivered very little security value despite hours of
effort. And it was profoundly exhausting.

And it raised a bigger question:

If this is what SAST results look like
in a security focused organization,
how bad is it for everyone else?

Recognizing that Ghost’s code repositories are unique and likely not
fully representative, the research team set out to try to better
understand the problem on a larger scale.

Ghost Report: Exorcising the SAST Demons

Symptoms of a Broken
SAST Workflow

Here are the most common
signs that your SAST
workflow is broken and
burning time on problems
that don’t matter.

Thousands of “potential”
findings—fewer than 10%
worth fixing

Triage takes 30-60 minutes
per finding

Most findings are rated as
High/Critical, representing
the worst-case scenario, but
are not actually exploitable

Ignore anything below “High”
severity just to stay afloat

Findings in test files or
folders that pose no material
risk

10x as many SCA findings as
actual vulnerabilities in 1st-
party code

Manual rule-tuning that'’s
hard to get right

Security and engineering
teams burned out by alert
fatigue

ghost

3. METHODOLOGY

To evaluate how effective traditional SAST tools are and how much toil

they generate, we designed an experiment focused on three
variables:

« Accuracy: How many flagged vulnerabilities were exploitable (True Positives)?
« Effort: How much time would manual triage require to validate each finding?
« Allmpact: How much toil could be reduced through Al-assisted validation?

We selected three common vulnerability classes across three popular
programming languages and frameworks:

e Go + Gin: SQL Injection (via GORM db.First() misuse)
o Python + Flask: Command Injection (via subprocess with
shell=True)

o PHP + Laravel: Arbitrary File Upload (via file()—storeAs())

For each language/framework pair, we scanned up to 1,000 actively
maintained GitHub repositories—filtered by language, size (>500KB),
recent commits, and at least one GitHub Star

Step-by-Step Process

1. Repository Selection

We used the GitHub repository search API to search for relevant
repositories and applied filters to select actively maintained, non-
template codebases.

* Queried by framework, language, and recent activity
« Filtered by repo size (>500KB), push date, and star count
« Cloned selected repos locally for scanning

2. SAST Scanning

Each repository was scanned using an open-source SAST engine.

* Applied a single rule per test targeting one vulnerability class
« Created custom detection rules for flaws not covered by default
(e.g., GORM misuse in Go)

3. Al-Powered Validation

Each flagged finding was evaluated by a modern LLM.

* We evaluated multiple models and techniques before arriving at a
combination of deterministic code evaluation and LLM analysis
using state-of-the-art Al models

Ghost Report: Exorcising the SAST Demons

©

Human-in-the-Loop
Validation

While Al helped drastically
reduce triage time, every
finding was reviewed by a
human analyst before
inclusion in the final results.
This hybrid approach
ensured that:

¢ Accurate classification of
True and False Positives

» Correction of edge cases
missed by Al

o A validated dataset that
reflects real-world risk

By combining speed with
expert oversight, we modeled
how modern AppSec teams
can realistically scale triage
without compromising on
quality.

Al did the heavy lifting.
Analysts made the final call.

Pg 3

https://github.com/search?q=&type=repositories

ghost

» Prompts were engineered with vulnerability-specific context
and example-driven reasoning to maximize LLM precision

o Custom prompts and examples guided the model to classify
findings as True or False Positives

e The LLM considered exploitability, attacker control, and the
presence of mitigations

» For each True Positive, we generated an adjusted severity score
and contextual risk assessment

4. Human Review

A human analyst verified all Al-generated judgments.

» Analysts confirmed whether or not each finding represented a
real, exploitable risk

« Final results included both raw findings and validated security
issues

Ghost Report: Exorcising the SAST Demons

What We Tested

o SQL Injection:
Dangerous user input
executed in DB queries

Command Injection:
User input executed in
OS-level shell commands

Arbitrary File Upload:
User input controls file
names/paths during
upload, risking overwrite
or RCE

This methodology allowed us to measure the noise-to-signal ratio
for each language, estimate the manual triage burden, and quantify
the time saved through Al-assisted analysis.

4. FINDINGS & ANALYSIS

Across the three language/framework pairs, we scanned nearly
3,000 open-source repositories and identified over 2,000 potential
vulnerabilities. Each flagged finding was reviewed through our Al +
human-in-the-loop triage pipeline.

In the following sections, we break down our results by language
and vulnerability class, showing how traditional SAST performed
and where Al added meaningful value.

4.1 Go + Gin: SQL Injection

Our first test case focused on Go applications using the Gin
framework, targeting a known edge case in the db.First()
function of the GORM ORM library.

When developers pass a string (rather than an integer) as the
second parameter to db.First(), GORM skips query
parameterization and directly interpolates
the input into the SQL query, making it
vulnerable to injection.

func GetUser(ctx *gin.Context) r.ResponseResult {
id := ctx.Param("id")
var user model.User

if err := model.db.First(&user, id).Error; err == nil {
For example, this route handler
passes unvalidated user input
directly into a SQL query:

b
}

gI“OSt Ghost Report: Exorcising the SAST Demons

An attacker could provide a string like "1=1;DROP TABLE users;",
resulting in a classic SQL injection.

The safe version validates input before use: func GetUser(ctx *gin.Context) r.ResponseResult {
idStr := ctx.Param("id")

} id, err := strconv.Atoi(idStr)
if err == nil {
return r.SetResponseFailure("Invalid User Id")
3

This provided the necessary knowledge to
create a source code rule matching all
instances of callstodb.First(...) if err := model.db.First(&user, id).Error; err == nil {
containing 2 or more parameters. This rule
also included logic to match "chained" calls,)
such asdb.Where() .First(...) again
with two or more parameters passed.

}

Repository Sample and Detection Logic

We scanned 856 public Golang/Gin repositories, filtered by size,
recency, and popularity (see Appendix A). Using a custom rule, we
identified instances where db.First() ordb.Where().First()
received unvalidated user input.

This scan returned 805 potential findings, or nearly one finding per
repo.

Al Validation Criteria

We ran each finding through a modern LLM using tailored >|<

prompts and language-specific augmented content. To be Fun Fact

verified as a True Positive, a finding had to meet all three of

the following criteria: The vulnerable condition

created by misusing GORM'’s

e The code is part of a real, reachable execution path db.First()KeleIgtiaglElalt=Ne!
» The flaw is exploitable by external input but rarely detected by
« No mitigations are present that would block the attack default SAST tools, requiring

custom rules to find reliably.

Of the 805 findings:

¢ 159 were validated as True Positives (19.75%)
e 646 were False Positives (80.25%)

Based on an optimistic average of 10 minutes per manual
triage, Al validation saved over 134 analyst hours just for this

single flaw.

https://docs.google.com/document/d/12dIYQ0ZoX-VGY8AwuHTqWJehI_LcbdKTgtLt6WrY08s/edit?tab=t.0#heading=h.v8xc0i3zibd0

ghost

4.2 Python + Flask: Command Injection

Our second test case focused on Python applications using the
Flask framework, specifically targeting command injection
vulnerabilities introduced through misuse of the subprocess

module.

The vulnerability arises when untrusted input is passed directly into
a shell command using subprocess functions like
check_output() or Popen() with shell=True. When this
happens, attackers can inject arbitrary shell commands, potentially

leading to full system compromise.

A vulnerable Flask route might look like this:

If a user supplies a value like
example.com; rm -rf /, both commands
would be executed.

A secure implementation avoids
shell=True and uses a list of arguments
instead of a string:

The source code matching rule looked for instances where calls to
subprocess class methods such as Popen(), run(), and

check_output() were present.

Repository Sample and Detection Logic

We scanned the top 1,000 Python/Flask repositories on GitHub,
filtered for activity, size, and popularity (see Appendix A). Using an
existing rule in our SAST engine, we identified usages of subprocess
functions with unvalidated input and shell=True.

This scan returned 1,166 potential findings, or approximately 117

findings per repository.

Ghost Report: Exorcising the SAST Demons

@app.route("/dns")
def page():
hostname = request.values.get('hostname')
cmd = 'nslookup ' + hostname
return subprocess.check_output(cmd, shell=True)

@app.route("/dns")
def page():
hostname = request.values.get('hostname')
return subprocess.check_output([“nslookup”], hostname)

https://docs.google.com/document/d/12dIYQ0ZoX-VGY8AwuHTqWJehI_LcbdKTgtLt6WrY08s/edit?tab=t.0#heading=h.vw4zi8yjt06d

ghost

Al Validation Criteria

Each finding was passed to a modern LLM for triage using a
tailored prompt and example-based reasoning. To be verified

as a True Positive, the following conditions had to be met:

» Attacker-controlled input flows into a shell command
» The code path is exploitable in a real-world request

» No sanitization, validation, or access controls mitigate the

risk
Of the 1,166 flagged issues:

e 6 were validated as True Positives (0.51%)
* 1,160 were False Positives (99.49%)

At an estimated 10 minutes per manual triage, Al validation

saved over 194 analyst hours with only 6 results requiring
further review.

4.3 PHP + Laravel: Arbitrary File Upload

Our final test case focused on PHP applications using the Laravel
framework, targeting a common file upload vulnerability present via
an insecure use of the storeAs () method in Laravels file handling

system named Flysystem (version 2.x and older).

The issue arises when developers allow user-supplied input, either
for the file name or file path, to flow directly into the storeAs()

method. This opens the door to arbitrary file upload attacks,
potentially allowing overwrites of critical config files or placing
malicious files in sensitive directories.

Here’s a simplified example of a
vulnerable route handler: (

Ghost Report: Exorcising the SAST Demons

k

Why So Many False
Positives?

Many alerts were triggered
by benign uses of
, or by tools
calling internal scripts during
Cl/CD workflows. Static
rules can't tell whether input
is attacker-controlled or
mitigated by context. Al can.

public function upload(BackupUploadRequest $request)

$file = $request—file('backup_file');

$file—storeAs('backup/db', $file—getClientOriginalName());

An attacker could manipulate the
original filename (e.g.,"../../.env")
to overwrite sensitive files.

A secure implementation sanitizes

$safeFileName =

public function upload(BackupUploadRequest $request)

the input before storage: {
. $file = $request—file('backup_file');

basename ($file—>getClientOriginalName());

$file—storeAs('backup/db', $safeFileName);

ghost

The source code matching rule looked for instances where calls to
file()—storeAs() were present in Laravel codebases.

Repository Sample and Detection Logic

We scanned the top 1,000 PHP/Laravel repositories on GitHub,
using the same size, activity, and popularity filters applied in
previous tests. We developed a custom static analysis rule to detect
potentially unsafe use of the file()—storeAs() method.

This scan surfaced 145 potential findings, or roughly 0.14 findings
per repository.

Al Validation Criteria

Each finding was evaluated by a modern LLM using a
structured prompt. To be classified as a True Positive, the
following conditions had to be met:

o User input directly influences file name or path

» No input sanitization or validation is present

» The application lacks controls (e.g. auth, content-type
checks) that prevent exploitation

Of the 145 findings:

e 15 were validated as True Positives (10.34%)
« 130 were False Positives (89.66%)

Assuming 10 minutes per manual review, Al-assisted triage
saved approximately 24 analyst hours on this vulnerability

class alone.

4.4 Time Savings Summary

Across all three language and framework combinations,
traditional SAST tools generated 2,116 potential security
findings. After Al-assisted triage and human review, only 206
were actual vulnerabilities—a true positive rate of less than
10%.

That means over 91% of items surfaced were false positives,

demanding manual effort but delivering no security value.

Ghost Report: Exorcising the SAST Demons

k

Why This Flaw Matters

Arbitrary file upload
vulnerabilities are often
misunderstood and
overlooked but can be
devastating. User-supplied
inputs that get sent
unsanitized to file storage
methods can lead to
unauthorized access to
environment configs or even
remote code execution in
certain cases.

ghost

20 -
%1 -
202 -
203 -
204 -
905 -
906 -
97 -
908 -
209 -
910 -
o11 -
912 -
913 -
914 -
915 -
916 -
917 -
918 -
919 -
220 -
921 -
922 -
923 -
924 -
925 -
926 -
P -
928 -
929 -
930 -
931 -
932 -
933 -
934 -
935 -
936 -
937 -
938 -
939 -
240 -
Y
942 -
943 -
944 -
945 -
946 -
047 -
048 -
949 -
950 -

Ghost Report: Exorcising the SAST Demons

To estimate the burden this imposes on security teams, we applied a
conservative estimate of 10 minutes per finding for manual review. The
result: Al-assisted validation saved over 350 analyst hours across just
three vulnerability classes.

The table below summarizes these results:

Language/ Vulnerability Repos Potential False FP True TP
Framework Class Scanned Findings Positives Rate Positives Rate

Reality Check

We used a 10-minute-per-finding
estimate, but the actual time varies.
If triage takes 30 minutes, that’s a
whopping 1,058 hours saved. If it
takes 1 minute, it’s still over 30
hours saved across just 3
vulnerability types.

*

Hours Saved
by AI Triage

Pg 9

ghost

5. KEY INSIGHTS

The results of our experiment were clear. But the implications go far beyond false positive rates and time
savings. Here’s what our findings really tell us about the state of application security today:

1. The SAST Noise Problem Is
Worse Than Most Teams Realize

Even with narrowly scoped scans and hand-tuned
rules, more than 91% of findings were false
positives. In one test, 99.5% of flagged issues
were invalid. This isn't just inefficient. It's
unsustainable.

3. Context Is the Missing
Piece in Legacy Detection

Static pattern-matching can't distinguish real,
exploitable risk from hypothetical flaws. Whether
it's sanitized input, unreachable code, or internal-
only paths, legacy SAST can’t see the bigger
picture. Effective triage requires understanding
the full context in which code runs.

5. There's a Better Path Forward
—And It's Contextual

This research didn't just measure inefficiency. It
pointed to a new direction. Al-powered
validation, when grounded in context and
reinforced with human review, delivers scalable
triage with real precision.

This is the foundation for CAST (Contextual
Application Security Testing) and it's where
modern AppSec is headed.

2. Al Dramatically Reduces Triage
Toil Without Sacrificing Accuracy

By using Al to assess exploitability and context,
we eliminated hundreds of hours of manual
review. Importantly, Al didn't miss valid issues. It
simply filtered out the noise so human analysts
could focus on what matters.

4. Teams Are Building
Workarounds, Not Solutions

Ignoring “medium” findings, tuning rules
aggressively, and filtering by file path aren't
sustainable strategies—they’re coping
mechanisms. The current model forces AppSec
teams into a tradeoff between accuracy and
velocity. That has to change.

ghost

Ghost Report: Exorcising the SAST Demons

6. CAST: A NEW APPROACH

Our research confirmed the value of Al-assisted triage for traditional
static analysis findings. But it also revealed a deeper insight: many of
the most dangerous vulnerabilities are fundamentally undetectable
by pattern-matching tools.

These include vulnerability classes OWASP flags as critical, such as:
Broken Access Control — OWASP Web App Top 10 #1

Broken Object Level Authorization (BOLA) — OWASP API Top 10 #1
Broken Authentication — OWASP API Top 10 #2

Broken Property Level Authorization (BPLA) — OWASP API Top 10 #3

These flaws are rarely detectable with syntactic pattern-matching
alone. ldentifying them requires what legacy tools lack: context.
Specifically, understanding how application logic, user identity, and
data flow interact across execution paths.

These issues often arise from a misuse of business logic, implicit
authorization assumptions, or flawed transactional design. Two
examples from our research illustrate this clearly.

Broken Object Level Authorization (BOLA)

In the MakeTransfex () function of a banking app, the source account
is queried without verifying that it belongs to the authenticated user:

func MakeTransfer(c *gin.Context) {
currentUser, err := helpers.GetCurrentUsex(c)
// the lack of a currentUser check on the UserId here is
what exposes

// these transfers to BOLA
res := db.Where(&models.Account{
Token: input.AccountFrom,
Partition: currentUser.Partition,
}) .First(&souzrce)

Because there’s no check that the account’s UserId matches the
authenticated user, an attacker can supply a valid account ID from
another user in the same partition and transfer funds without
authorization.

This isn't just a logic oversight—it's a Broken Access Control
vulnerability (OWASP API #1) that allows unauthorized transactions and
potential fraud. Traditional SAST tools completely miss this because the
logic fault spans multiple objects, identity assumptions, and database
queries.

ghost

Ghost Report: Exorcising the SAST Demons

Here’'s how our BOLA agent summarized the flaw:

The MakeTransfer endpoint does not correctly verify that the authenticated user is the owner
of the source account. The query that retrieves the source account checks for a matching
account token and that the account's partition equals the authenticated user's partition, but
it does not enforce that the account's UserId matches the authenticated user's ID.

An attacker can supply an account token in the account_from field that does not belong to
them but matches the partition value of the authenticated user. Since the lookup of the
source account does not verify the ownership (i.e., the UserlId), the attacker can transfer
funds from another user’s account. This leads to unauthorized transactions, which may result
in data loss or fraud.

Race Condition in Financial Logic

In the same function, another critical flaw exists: the balance update
logic runs outside of a database transaction.

// update source & dest account balances outside a database transaction

source.Balance = source.Balance - input.Amount
source.UpdatedAt = time.Now()
dest.Balance = dest.Balance + input.Amount

dest.UpdatedAt = time.Now()

// Save the updated balances in separate calls allowing for the race
condition

db.Save (&source)

db.Save (&dest)

This opens the door to concurrent requests. An attacker can rapidly
issue multiple transfer requests that pass the balance check before
updates are committed, resulting in unauthorized overdrafts or the
synthetic creation of funds.

« This constitutes a Broken Access Control flaw (OWASP Web App
A01:2021), as state changes can occur without consistency
guarantees.

« It's also an Insecure Design issue (OWASP Web App A04:2021), due
to missing transactional integrity in business-critical operations.

As our race condition agent put it:

The MakeTransfer endpoint performs multi-step database modifications (balance deduction,
addition, and transaction logging) without using database transactions or locking mechanisms.

An attacker can rapidly issue multiple concurrent transfer requests using the same source
account. Because the balance check and subsequent updates are performed outside of an atomic
transaction, two or more requests could simultaneously pass the balance check and update the
accounts. This race condition can lead to overdrafts or creation of extra funds, bypassing
intended business logic.

These vulnerabilities don’t show up as regex-matching “bad patterns.”
They only emerge when you understand how the app is supposed to
behave and how that behavior breaks down under abuse.

Pg 12

ghOSt Ghost Report: Exorcising the SAST Demons

What Makes CAST Different

Traditional SAST doesn’t even attempt to detect these types of issues.
A seasoned analyst might catch them during manual code review, but
that level of effort is not scalable or cost-effective.

That's why we built CAST—Contextual Application Security Testing. It
takes a fundamentally different approach to detection:

© Understands execution context and runtime exposure

© Uses Al agents trained to reason about logic, identity, and control
flow

© Pre-indexes codebases to expose semantic relationships across
files and services

© Finds OWASP-classified logic flaws missed by pattern-matching
tools

© Avoids brittle, regex-driven detection models altogether

CAST doesn't just look for bad syntax. It builds a contextual model of
how the app is supposed to behave—then identifies where reality
breaks down.

It reasons about business logic from multiple vantage points, such as: EXORC]S]NG ’]’]-[E

e From route handler inward

+ From database model outward

e From CLI or APl input into application behavior DEMONS
Ghost's CAST platform uses a team of Al agents, each focused on
specific vulnerability classes and armed with structured prompts,
source code context, variable types, auth middleware logic, and data

model definitions. These agents don't just “spot bad lines”. They model >I<
how risks propagate through the system.

It's now possible to answer questions such as ‘Are all my endpoints that Next, We'll Draw
need authentication properly enforcing it?” and 'For endpoints that Our Conclusion
enforce user specific authentication, does the authorization logic exist
and properly restrict access to the data for just that user?

It's a system that doesn't just scan code. It understands it.

ghost

1424
1425
1426
1427
1428
1429
1430
1431
1432
1433

7. CONCLUSION

Our research set out to measure the inefficiencies of traditional SAST,
and the results speak volumes. Across nearly 3,000 real-world code
repositories and 2,100 flagged issues, over 91% were false positives. In
Python/Flask repos, 99.5% of the potential findings related to
command injection were ultimately irrelevant noise.

More concerning: SAST missed entire classes of critical
vulnerabilities, including the very issues that dominate the OWASP Top
10 for web apps and APIs. Broken access controls, flawed business
logic, and insecure workflows went completely undetected.

Al-assisted triage helped cut through the noise. But it's CAST that
redefines the detection model.

By combining semantic indexing, runtime correlation, and a team of Al
agents trained to think like security engineers, CAST:
o Filters out noise with high precision
o Surfaces true risk based on application and exposure context
o Detects OWASP-critical issues that traditional tools consistently
miss
e Produces evidence-backed, developer-friendly findings that are
ready for action

CAST doesn't just fix SAST. It replaces @
broken model with one built for how
modern software actually works.

As development velocity increases and APIs become the dominant
surface area, risk shifts from simple bugs to abuse of logic, intent, and
system design. Addressing those risks requires tools that model code
semantically, not just syntactically.

That's the future Ghost is building: One where application security is
smarter, more precise, and finally aligned with how real-world
systems behave.

Ghost Report: Exorcising the SAST Demons

Pg 14

ghost

8. RESOURCES AND FURTHER READING

Static Application Security Testing (SAST)

Gartner Glossary: Static Application Security Testing (SAST)
https://www.gartner.com/en/information-technology/glossary/static-
application-security-testing-sast

Overview of SAST methodology, use cases, and industry definition.

False Positives in Static Code Analysis — Parasoft
https://www.parasoft.com/blog/false-positives-in-static-code-analysis/
Analysis of common pitfalls in legacy SAST and strategies to reduce
noise.

How to Reduce False Positives in SAST - Corgea
https://corgea.com/Learn/how-to-reduce-false-positives-in-sast
Practical guidance for improving signal-to-noise ratio in traditional
scanning workflows.

Open Source SAST Tools

SonarQube - https://github.com/SonarSource/sonarqube
Popular open-source platform for continuous code quality and security
analysis.

Semgrep - https://github.com/semgrep/semgrep
Lightweight, rule-based SAST tool with customizable pattern-matching.

CodeQL (GitHub) - https://github.com/github/codeq|
Semantic code analysis engine that powers GitHub's security alerts.

Brakeman - https://github.com/presidentbeef/brakeman
Static analysis tool for Ruby on Rails applications.

Bandit - https://github.com/PyCQA/bandit
Security linter for Python codebases.

Open Web Application Security Project (OWASP)

OWASP Top 10 - Web Application Security Risks (2021)
https://owasp.org/www-project-top-ten/

The most critical web app security risks, including Broken Access
Control and Insecure Design.

OWASP API Security Top 10 (2023)
https://owasp.org/API-Security/editions/2023/en/0x11-t10/
The definitive guide to the top risks facing modern API architectures.

Ghost Report: Exorcising the SAST Demons

Pg 15

https://www.gartner.com/en/information-technology/glossary/static-application-security-testing-sast
https://www.gartner.com/en/information-technology/glossary/static-application-security-testing-sast
https://www.parasoft.com/blog/false-positives-in-static-code-analysis/
https://corgea.com/Learn/how-to-reduce-false-positives-in-sast
https://github.com/SonarSource/sonarqube
https://github.com/semgrep/semgrep
https://github.com/github/codeql
https://github.com/presidentbeef/brakeman
https://github.com/PyCQA/bandit
https://owasp.org/www-project-top-ten/
https://owasp.org/API-Security/editions/2023/en/0x11-t10/

ghost

Ghost Report: Exorcising the SAST Demons

Appendix A: GitHub Search Queries

To identify real-world, actively maintained repositories representative of
typical development practices, we used the GitHub Repository Search API
with targeted queries. Each query was crafted to match repositories using
a specific language and framework, while filtering out inactive, trivial, or
template repos.

The filters included:
+ Language: to scope the search to relevant ecosystems
Size >500KB: to exclude trivial/demo projects
Pushed after 2023-01-31: to ensure recent activity
Stars =1: to focus on public code with some adoption
Archived = false /| Template = false: to eliminate non-active projects
Sorted by stars descending: to prioritize more popular and active repos

Go + Gin (SQL Injection)

gin language:Go size:>500 pushed:>2023-01-31 stars: =1 template:false

archived:false sort:stars-desc

Python + Flask (Command Injection)

flask language:Python size:>500 pushed:>2023-01-31 stars: =1
template:false archived:false sort:stars-desc

PHP + Laravel (Arbitrary File Upload)

laravel language:PHP size:>500 pushed:>2023-01-31 stars: =1
template:false archived:false sort:stars-desc

Note: These queries were executed using the GitHub API at the time of
research (early 2025). Due to ongoing code activity on GitHub, exact result
counts may vary if repeated at a later date.

0

END OF REPORT

Pg 16

