
A Report By Ghost Security

How Ghost is Replacing Rule-Based

Scanning with AI-Powered Triage

and Detection.

Exorcising the 

SAST
Demons

Ghost Report: Exorcising the SAST Demons

Ghost Security scanned nearly 3,000 real-world open-source
repositories across Go, Python, and PHP to test how well traditional
static application security testing (SAST) tools hold up at scale.   

The results were staggering:

This isn't just inefficient. It’s unsustainable.

Security teams are drowning in alerts. As development velocity
accelerates, legacy SAST tools flood teams with low-signal noise, most of
it false positives. AppSec and engineering teams spend hours chasing
dead ends instead of delivering value to their customers. Meanwhile, real
risks slip through the cracks.

Our research shows that AI-powered validation, when context-aware, can
eliminate this toil, accelerate triage, and help teams focus on real risks. By
combining pattern detection with reasoning about exploitability, we
reduce noise and spotlight what matters.  

Consider this: in Python/Flask projects, nearly 99.5% of flagged command
injection issues were false positives. That’s thousands of misleading alerts
—each demanding analyst review with little to no value in return. By
contrast, our AI-assisted triage slashed review time while preserving
detection quality, saving more than 350 hours across just three
vulnerability classes.

And that’s just the beginning. The opportunity isn’t only in reducing toil—
it’s in rethinking detection from the ground up. Pattern-matching alone
can’t detect the vulnerabilities that matter most. The future belongs to
systems that understand code, behavior, and context. That’s what Ghost
is building with Contextual Application Security Testing (CAST).

This study scanned over 2,800 repos across Go (Gin), Python (Flask),
and PHP (Laravel), comparing manual triage with AI-assisted validation.  

What we uncovered reveals a critical insight:

Traditional SAST tools operate on syntax; effective AI-powered
validation operates on semantics, intent, and risk.

 the future of application
security isn’t just about identifying patterns. It's about understanding
context.

Why AI Triage Isn’t
Plug-and-Play

AI isn’t a silver bullet for
SAST triage. You can’t just
throw raw findings at a
language model and expect
useful results. Precision
requires more:

� Vulnerability-specific
prompt�

� Framework-aware
contex�

� Reasoning that mirrors
expert judgmen�

� Signal enrichment and
static/runtime cue�

� Examples, examples,
examples 

It’s not about using AI; it’s
about how you structure,
tune, and apply it to the
problem. Ghost’s approach
layers all of the above into
specialized AI agents
engineered to analyze
findings, call supporting
tools, and make informed,
context-aware decisions
autonomously.

Traditional SAST is failing security and engineering teams,  
wasting hundreds of hours for minimal security value.

� 2,116 potential security findings were flagged�
� Over 91% were false positives—alerts with no real risk�
� Manual triage would’ve taken more than 350 hours for just 180

true positives.

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-
 Pg 1

�� Executive Summary

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

Modern development moves fast. CI/CD pipelines and AI coding
assistants let teams ship multiple times a day. But this velocity comes
at a cost: keeping code secure at scale is harder than ever.

To keep up, most AppSec teams rely on static application security
testing (SAST) and software composition analysis (SCA) tools to catch
vulnerabilities before code hits production. In theory, these tools
prevent risky code from reaching production. In practice, they flood
teams with noisy alerts and endless manual triage.

At Ghost, we wanted to quantify just how painful that process can be.
We ran traditional SAST scans across more than 100 of our internal
repositories and the results were worse than we expected:

The experience delivered very little security value despite hours of
effort. And it was profoundly exhausting. 

And it raised a bigger question:

Recognizing that Ghost’s code repositories are unique and likely not
fully representative, the research team set out to try to better
understand the problem on a larger scale.

Symptoms of a Broken
SAST Workflow

If this is what SAST results look like
in a security focused organization,

how bad is it for everyone else?

Here are the most common
signs that your SAST
workflow is broken and
burning time on problems
that don’t matter.

� Thousands of “potential”
findings—fewer than 10%
worth fixin�

� Triage takes 30–60 minutes
per findin�

� Most findings are rated as
High/Critical, representing
the worst-case scenario, but
are not actually exploitabl�

� Ignore anything below “High”
severity just to stay afloa�

� Findings in test files or
folders that pose no material
ris�

� 10x as many SCA findings as
actual vulnerabilities in 1st-
party cod�

� Manual rule-tuning that’s
hard to get righ�

� Security and engineering
teams burned out by alert
fatigue

�� Background

� Nearly 5,000 findings were flagged—an overwhelming volume�

� It typically took 10–60 minutes to validate a single finding�

� Most were rated High or Critical, but due to mitigating controls or

unreachable code, nearly all were non-issues�

� Tuning the rulesets was time-consuming, risky, and unreliable�

� In the end, fewer than a dozen findings were worth fixing.

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

Ghost Report: Exorcising the SAST Demons

Pg 2

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

To evaluate how effective traditional SAST tools are and how much toil
they generate, we designed an experiment focused on three
variables:

For each language/framework pair, we scanned up to 1,000 actively
maintained GitHub repositories—filtered by language, size (>500KB),
recent commits, and at least one GitHub Star

We selected three common vulnerability classes across three popular
programming languages and frameworks:

​​We used the to search for relevant
repositories and applied filters to select actively maintained, non-
template codebases�

� Queried by framework, language, and recent activit�
� Filtered by repo size (>500KB), push date, and star coun�
� Cloned selected repos locally for scanning

 GitHub repository search API

Each repository was scanned using an open-source SAST engine�

� Applied a single rule per test targeting one vulnerability clas�
� Created custom detection rules for flaws not covered by default

(e.g., GORM misuse in Go)

Each flagged finding was evaluated by a modern LLM�

� We evaluated multiple models and techniques before arriving at a
combination of deterministic code evaluation and LLM analysis
using state-of-the-art AI models

�� Methodology

�� Repository Selection

�� SAST Scanning

�� AI-Powered Validation

Step-by-Step Process

� Accuracy: How many flagged vulnerabilities were exploitable (True Positives)�

� Effort: How much time would manual triage require to validate each finding�

� AI Impact: How much toil could be reduced through AI-assisted validation?

� Go + Gin: SQL Injection (via GORM misuse�

� Python + Flask: Command Injection (via with  

 �

� PHP + Laravel: Arbitrary File Upload (via)

db.First()

subprocess
shell=True

file()->storeAs()
Human-in-the-Loop
Validation

While AI helped drastically
reduce triage time, every
finding was reviewed by a
human analyst before
inclusion in the final results.
This hybrid approach
ensured that:

By combining speed with
expert oversight, we modeled
how modern AppSec teams
can realistically scale triage
without compromising on
quality.

AI did the heavy lifting.
Analysts made the final call.

� Accurate classification of
True and False Positive�

� Correction of edge cases
missed by A�

� A validated dataset that
reflects real-world risk

Ghost Report: Exorcising the SAST Demons

Pg 3

https://github.com/search?q=&type=repositories

Pg 4

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

Across the three language/framework pairs, we scanned nearly
3,000 open-source repositories and identified over 2,000 potential
vulnerabilities. Each flagged finding was reviewed through our AI +
human-in-the-loop triage pipeline.

In the following sections, we break down our results by language
and vulnerability class, showing how traditional SAST performed
and where AI added meaningful value.

What We Tested

� SQL Injection:
Dangerous user input
executed in DB querie�

� Command Injection:
User input executed in
OS-level shell command�

� Arbitrary File Upload:
User input controls file
names/paths during
upload, risking overwrite
or RCE

� Prompts were engineered with vulnerability-specific context
and example-driven reasoning to maximize LLM precisio�

� Custom prompts and examples guided the model to classify
findings as True or False Positive�

� The LLM considered exploitability, attacker control, and the
presence of mitigation�

� For each True Positive, we generated an adjusted severity score
and contextual risk assessment

A human analyst verified all AI-generated judgments�

� Analysts confirmed whether or not each finding represented a
real, exploitable ris�

� Final results included both raw findings and validated security
issues 

This methodology allowed us to measure the noise-to-signal ratio
for each language, estimate the manual triage burden, and quantify
the time saved through AI-assisted analysis.

4. Human Review

�� Findings & Analysis

Our first test case focused on Go applications using the Gin
framework, targeting a known edge case in the
function of the GORM ORM library. 

When developers pass a string (rather than an integer) as the
second parameter to , GORM skips query
parameterization and directly interpolates  
the input into the SQL query, making it  
vulnerable to injection.
 

For example, this route handler  
passes unvalidated user input  
directly into a SQL query:

db.First()

db.First()

4.1 Go + Gin: SQL Injection

func GetUser(ctx *gin.Context) r.ResponseResult {

 id := ctx.Param("id")

 var user model.User

 if err := model.db.First(&user, id).Error; err != nil {

 ...

 }

}

Ghost Report: Exorcising the SAST Demons

Pg 5

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

An attacker could provide a string like ,
resulting in a classic SQL injection. 

The safe version validates input before use:  

"1=1;DROP TABLE users;"

This provided the necessary knowledge to
create a source code rule matching all
instances of calls to
containing 2 or more parameters. This rule
also included logic to match "chained" calls,
such as again
with two or more parameters passed.

db.First(...)

db.Where().First(...)

We scanned 856 public Golang/Gin repositories, filtered by size,
recency, and popularity (see . Using a custom rule, we
identified instances where or
received unvalidated user input. 

This scan returned 805 potential findings, or nearly one finding per
repo. 

Appendix A)
db.First() db.Where().First()

AI Validation Criteria 

We ran each finding through a modern LLM using tailored
prompts and language-specific augmented content. To be
verified as a True Positive, a finding had to meet all three of
the following criteria�

� The code is part of a real, reachable execution pat�
� The flaw is exploitable by external inpu�
� No mitigations are present that would block the attack 

Of the 805 findings�

� 159 were validated as True Positives (19.75%�
� 646 were False Positives (80.25%) 

Based on an optimistic average of 10 minutes per manual
triage, AI validation saved over 134 analyst hours just for this
single flaw.

Repository Sample and Detection Logic

func GetUser(ctx *gin.Context) r.ResponseResult {

 idStr := ctx.Param("id")

 id, err := strconv.Atoi(idStr)

 if err != nil {

 return r.SetResponseFailure("Invalid User Id")

 }

 if err := model.db.First(&user, id).Error; err != nil {

 ...

 }

}

Fun Fact

The vulnerable condition
created by misusing GORM’s

 is documented
but rarely detected by
default SAST tools, requiring
custom rules to find reliably.

db.First()

Ghost Report: Exorcising the SAST Demons

https://docs.google.com/document/d/12dIYQ0ZoX-VGY8AwuHTqWJehI_LcbdKTgtLt6WrY08s/edit?tab=t.0#heading=h.v8xc0i3zibd0

Pg 6

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

If a user supplies a value like 
, both commands  

would be executed. 

A secure implementation avoids  
 and uses a list of arguments  

instead of a string:

example.com; rm -rf /

shell=True

Our second test case focused on Python applications using the
Flask framework, specifically targeting command injection
vulnerabilities introduced through misuse of the
module.

The vulnerability arises when untrusted input is passed directly into
a shell command using functions like

 or with . When this
happens, attackers can inject arbitrary shell commands, potentially
leading to full system compromise. 

A vulnerable Flask route might look like this:

subprocess

subprocess
check_output() Popen() shell=True

The source code matching rule looked for instances where calls to
subprocess class methods such as , , and

 were present.
Popen() run()

check_output()

We scanned the top 1,000 Python/Flask repositories on GitHub,
filtered for activity, size, and popularity (see). Using an
existing rule in our SAST engine, we identified usages of
functions with unvalidated input and . 

This scan returned 1,166 potential findings, or approximately 1.17
findings per repository.

 Appendix A
subprocess

 shell=True

4.2 Python + Flask: Command Injection

@app.route()

 page():

 hostname = request.values.get()

 cmd = ' ' + hostname

 subprocess.check_output(cmd, shell=True)

"/dns"
def

'hostname'
nslookup

return

@app.route()

 page():

 hostname = request.values.get()

 subprocess.check_output([], hostname)

"/dns"
def

'hostname'
return “nslookup”

Repository Sample and Detection Logic

Ghost Report: Exorcising the SAST Demons

https://docs.google.com/document/d/12dIYQ0ZoX-VGY8AwuHTqWJehI_LcbdKTgtLt6WrY08s/edit?tab=t.0#heading=h.vw4zi8yjt06d

Pg 7

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

AI Validation Criteria 

Each finding was passed to a modern LLM for triage using a
tailored prompt and example-based reasoning. To be verified
as a True Positive, the following conditions had to be met�

� Attacker-controlled input flows into a shell comman�
� The code path is exploitable in a real-world reques�
� No sanitization, validation, or access controls mitigate the

risk
 

Of the 1,166 flagged issues�

� 6 were validated as True Positives (0.51%�
� 1,160 were False Positives (99.49%) 

At an estimated 10 minutes per manual triage, AI validation
saved over 194 analyst hours with only 6 results requiring
further review.

Why So Many False
Positives?

Many alerts were triggered
by benign uses of

, or by tools
calling internal scripts during
CI/CD workflows. Static
rules can't tell whether input
is attacker-controlled or
mitigated by context. AI can.

subprocess

4.3 PHP + Laravel: Arbitrary File Upload

Our final test case focused on PHP applications using the Laravel
framework, targeting a common file upload vulnerability present via
an insecure use of the method in Laravel’s file handling
system named Flysystem (version 2.x and older). 

The issue arises when developers allow user-supplied input, either
for the file name or file path, to flow directly into the
method. This opens the door to arbitrary file upload attacks,
potentially allowing overwrites of critical config files or placing
malicious files in sensitive directories. 

Here’s a simplified example of a  
vulnerable route handler:

storeAs()

storeAs()

An attacker could manipulate the  
original filename (e.g., " ")  
to overwrite sensitive files. 

A secure implementation sanitizes  
the input before storage:

../../.env

public function upload(BackupUploadRequest $request)

{

 $file = $request->file('backup_file');

 $file->storeAs('backup/db', $file->getClientOriginalName());

}

public function upload(BackupUploadRequest $request)

{

 $file = $request->file('backup_file');

 $safeFileName = basename($file->getClientOriginalName());

 $file->storeAs('backup/db', $safeFileName);

}

Ghost Report: Exorcising the SAST Demons

Pg 8

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

``

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

We scanned the top 1,000 PHP/Laravel repositories on GitHub,
using the same size, activity, and popularity filters applied in
previous tests. We developed a custom static analysis rule to detect
potentially unsafe use of the method. 

This scan surfaced 145 potential findings, or roughly 0.14 findings
per repository.

 file()->storeAs()

The source code matching rule looked for instances where calls to
 were present in Laravel codebases.
file()->storeAs()

Repository Sample and Detection Logic

AI Validation Criteria 

Each finding was evaluated by a modern LLM using a
structured prompt. To be classified as a True Positive, the
following conditions had to be met�

� User input directly influences file name or pat�
� No input sanitization or validation is presen�
� The application lacks controls (e.g. auth, content-type

checks) that prevent exploitation 

Of the 145 findings�

� 15 were validated as True Positives (10.34%�
� 130 were False Positives (89.66%) 

Assuming 10 minutes per manual review, AI-assisted triage
saved approximately 24 analyst hours on this vulnerability
class alone.

Across all three language and framework combinations,
traditional SAST tools generated 2,116 potential security
findings. After AI-assisted triage and human review, only 206
were actual vulnerabilities—a true positive rate of less than
10%.

That means over 91% of items surfaced were false positives,
demanding manual effort but delivering no security value.

Why This Flaw Matters

Arbitrary file upload
vulnerabilities are often
misunderstood and
overlooked but can be
devastating. User-supplied
inputs that get sent
unsanitized to file storage
methods can lead to
unauthorized access to
environment configs or even
remote code execution in
certain cases.

4.4 Time Savings Summary

Ghost Report: Exorcising the SAST Demons

Pg 9

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

To estimate the burden this imposes on security teams, we applied a
conservative estimate of 10 minutes per finding for manual review. The
result: AI-assisted validation saved over 350 analyst hours across just
three vulnerability classes.

The table below summarizes these results:

Language/ 
Framework

Vulnerability 
Class

Repos 
Scanned

Potential 
Findings

False 
Positives

FP

Rate

True 
Positives

TP 
Rate

Hours Saved 
by AI Triage

Go/Gin SQL Injection 856 805 646 80.25% 159 19.75% 134.17

PHP  
/ Laravel

Arbitrary  
File Upload

1000 145 130 89.66% 15 10.34% 24.17

Python  
/ Flask

Command  
Injection

1000 1166 1160 99.49% 6 0.51% 194.33

Totals 2856 2116 1936 91.49% 180 8.51% 352.67

Bottom Line

AI didn’t just save time. It
transformed the triage
process from a reactive,
manual burden into a scalable,
high-precision workflow.

Reality Check

We used a 10-minute-per-finding
estimate, but the actual time varies.
If triage takes 30 minutes, that’s a
whopping 1,058 hours saved. If it
takes 1 minute, it’s still over 30
hours saved across just 3
vulnerability types.

Ghost Report: Exorcising the SAST Demons

Pg 10

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

The results of our experiment were clear. But the implications go far beyond false positive rates and time
savings. Here’s what our findings really tell us about the state of application security today:

�� Key Insights

Even with narrowly scoped scans and hand-tuned
rules, more than 91% of findings were false
positives. In one test, 99.5% of flagged issues
were invalid. This isn't just inefficient. It’s
unsustainable.

1. The SAST Noise Problem Is
Worse Than Most Teams Realize

By using AI to assess exploitability and context,
we eliminated hundreds of hours of manual
review. Importantly, AI didn't miss valid issues. It
simply filtered out the noise so human analysts
could focus on what matters.

2. AI Dramatically Reduces Triage
Toil Without Sacrificing Accuracy

Static pattern-matching can’t distinguish real,
exploitable risk from hypothetical flaws. Whether
it's sanitized input, unreachable code, or internal-
only paths, legacy SAST can’t see the bigger
picture. Effective triage requires understanding
the full context in which code runs.

3. Context Is the Missing
Piece in Legacy Detection

This research didn’t just measure inefficiency. It
pointed to a new direction. AI-powered
validation, when grounded in context and
reinforced with human review, delivers scalable
triage with real precision.

This is the foundation for CAST (Contextual
Application Security Testing) and it's where
modern AppSec is headed.

5. There’s a Better Path Forward
—And It’s Contextual

Ignoring “medium” findings, tuning rules
aggressively, and filtering by file path aren't
sustainable strategies—they’re coping
mechanisms. The current model forces AppSec
teams into a tradeoff between accuracy and
velocity. That has to change.

4. Teams Are Building
Workarounds, Not Solutions

Ghost Report: Exorcising the SAST Demons

Pg 11

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

�� CAST: A New Approach

Ghost Report: Exorcising the SAST Demons

Our research confirmed the value of AI-assisted triage for traditional
static analysis findings. But it also revealed a deeper insight: many of
the most dangerous vulnerabilities are fundamentally undetectable
by pattern-matching tools.

These include vulnerability classes OWASP flags as critical, such as�
� Broken Access Control – OWASP Web App Top 10 #�
� Broken Object Level Authorization (BOLA) — OWASP API Top 10 #�
� Broken Authentication – OWASP API Top 10 #�
� Broken Property Level Authorization (BPLA) – OWASP API Top 10 #3

These flaws are rarely detectable with syntactic pattern-matching
alone. Identifying them requires what legacy tools lack: context.
Specifically, understanding how application logic, user identity, and
data flow interact across execution paths.

These issues often arise from a misuse of business logic, implicit
authorization assumptions, or flawed transactional design. Two
examples from our research illustrate this clearly.

Because there’s no check that the account’s matches the
authenticated user, an attacker can supply a valid account ID from
another user in the same partition and transfer funds without
authorization.

This isn’t just a logic oversight—it’s a Broken Access Control
vulnerability (OWASP API #1) that allows unauthorized transactions and
potential fraud. Traditional SAST tools completely miss this because the
logic fault spans multiple objects, identity assumptions, and database
queries.

UserId

In the function of a banking app, the source account
is queried without verifying that it belongs to the authenticated user:

MakeTransfer()

Broken Object Level Authorization (BOLA)

func MakeTransfer(c *gin.Context) {

							currentUser, err := helpers.GetCurrentUser(c)

							// the lack of a currentUser check on the UserId here is
							what exposes

 // these transfers to BOLA

							res := db.Where(&models.Account{

															Token: input.AccountFrom,

															Partition: currentUser.Partition,

							}).First(&source)

Pg 12

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

Ghost Report: Exorcising the SAST Demons

Here’s how our BOLA agent summarized the flaw:

In the same function, another critical flaw exists: the balance update
logic runs outside of a database transaction.

This opens the door to concurrent requests. An attacker can rapidly
issue multiple transfer requests that pass the balance check before
updates are committed, resulting in unauthorized overdrafts or the
synthetic creation of funds�

� This constitutes a Broken Access Control flaw (OWASP Web App
A01:2021), as state changes can occur without consistency
guarantees�

� It’s also an Insecure Design issue (OWASP Web App A04:2021), due
to missing transactional integrity in business-critical operations.

As our race condition agent put it:

These vulnerabilities don’t show up as regex-matching “bad patterns.”
They only emerge when you understand how the app is supposed to
behave and how that behavior breaks down under abuse.

The endpoint does not correctly verify that the authenticated user is the owner
of the source account. The query that retrieves the source account checks for a matching
account token and that the account's partition equals the authenticated user's partition, but
it does not enforce that the account's UserId matches the authenticated user's ID.

An attacker can supply an account token in the account_from field that does not belong to
them but matches the partition value of the authenticated user. Since the lookup of the
source account does not verify the ownership (i.e., the UserId), the attacker can transfer
funds from another user’s account. This leads to unauthorized transactions, which may result
in data loss or fraud.

MakeTransfer

The endpoint performs multi-step database modifications (balance deduction,
addition, and transaction logging) without using database transactions or locking mechanisms.

An attacker can rapidly issue multiple concurrent transfer requests using the same source
account. Because the balance check and subsequent updates are performed outside of an atomic
transaction, two or more requests could simultaneously pass the balance check and update the
accounts. This race condition can lead to overdrafts or creation of extra funds, bypassing
intended business logic.

MakeTransfer

Race Condition in Financial Logic

// update source & dest account balances outside a database transaction

source.Balance = source.Balance - input.Amount

source.UpdatedAt = time.Now()

dest.Balance = dest.Balance + input.Amount

dest.UpdatedAt = time.Now()

// Save the updated balances in separate calls allowing for the race
condition

db.Save(&source)

db.Save(&dest)

Pg 13

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

Ghost Report: Exorcising the SAST Demons

Traditional SAST doesn’t even attempt to detect these types of issues.
A seasoned analyst might catch them during manual code review, but
that level of effort is not scalable or cost-effective.

That’s why we built CAST—Contextual Application Security Testing. It
takes a fundamentally different approach to detection�

� Understands execution context and runtime exposur�
� Uses AI agents trained to reason about logic, identity, and control

flo�
� Pre-indexes codebases to expose semantic relationships across

files and service�
� Finds OWASP-classified logic flaws missed by pattern-matching

tool�
� Avoids brittle, regex-driven detection models altogether

CAST doesn't just look for bad syntax. It builds a contextual model of
how the app is supposed to behave—then identifies where reality
breaks down.

It reasons about business logic from multiple vantage points, such as�

� From route handler inwar�
� From database model outwar�
� From CLI or API input into application behavior
 

Ghost’s CAST platform uses a team of AI agents, each focused on
specific vulnerability classes and armed with structured prompts,
source code context, variable types, auth middleware logic, and data
model definitions. These agents don’t just “spot bad lines”. They model
how risks propagate through the system.   

It’s now possible to answer questions such as ‘Are all my endpoints that
need authentication properly enforcing it?’ and ’For endpoints that
enforce user specific authentication, does the authorization logic exist
and properly restrict access to the data for just that user?’

It’s a system that doesn’t just code. It it.

scan understands

What Makes CAST Different

Next, We’ll Draw

Our Conclusion

Pg 9

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

To estimate the burden this imposes on security teams, we applied a
conservative estimate of 10 minutes per finding for manual review. The
result: AI-assisted validation saved over 350 analyst hours across just
three vulnerability classes.

The table below summarizes these results:

Language/ 
Framework

Vulnerability 
Class

Repos 
Scanned

Potential 
Findings

False 
Positives

FP

Rate

True 
Positives

TP 
Rate

Hours Saved 
by AI Triage

Go/Gin SQL Injection 856 805 646 80.25% 159 19.75% 134.17

PHP  
/ Laravel

Arbitrary  
File Upload

1000 145 130 89.66% 15 10.34% 24.17

Python  
/ Flask

Command  
Injection

1000 1166 1160 99.49% 6 0.51% 194.33

Totals 2856 2116 1936 91.49% 180 8.51% 352.67

Bottom Line

AI didn’t just save time. It
transformed the triage
process from a reactive,
manual burden into a
scalable, high-precision
workflow.

Reality Check

We used a 10-minute-per-finding estimate, but
the actual time varies. If triage takes 30 minutes,
that’s a whopping 1,058 hours saved. If it takes 1
minute, it’s still over 30 hours saved across just 3
vulnerability types.

Ghost Report: Exorcising the SAST Demons

Pg 14

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

Ghost Report: Exorcising the SAST Demons

�� Conclusion
Our research set out to measure the inefficiencies of traditional SAST,
and the results speak volumes. Across nearly 3,000 real-world code
repositories and 2,100 flagged issues, over 91% were false positives. In
Python/Flask repos, 99.5% of the potential findings related to
command injection were ultimately irrelevant noise.

More concerning: SAST missed entire classes of critical
vulnerabilities, including the very issues that dominate the OWASP Top
10 for web apps and APIs. Broken access controls, flawed business
logic, and insecure workflows went completely undetected.

AI-assisted triage helped cut through the noise. But it’s CAST that
redefines the detection model.

By combining semantic indexing, runtime correlation, and a team of AI
agents trained to think like security engineers, CAST�

� Filters out noise with high precisio�
� Surfaces true risk based on application and exposure contex�
� Detects OWASP-critical issues that traditional tools consistently
mis�

� Produces evidence-backed, developer-friendly findings that are
ready for action

As development velocity increases and APIs become the dominant
surface area, risk shifts from simple bugs to abuse of logic, intent, and
system design. Addressing those risks requires tools that model code
semantically, not just syntactically. 

That’s the future Ghost is building: One where application security is
smarter, more precise, and finally aligned with how real-world  
systems behave.

CAST doesn’t just fix SAST. It replaces a
broken model with one built for how
modern software actually works.

Pg 15

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

Ghost Report: Exorcising the SAST Demons

�� Resources and Further Reading
 Static Application Security Testing (SAST) 

Gartner Glossary: Static Application Security Testing (SAST) 

Overview of SAST methodology, use cases, and industry definition. 

False Positives in Static Code Analysis – Parasoft 

Analysis of common pitfalls in legacy SAST and strategies to reduce
noise. 

How to Reduce False Positives in SAST – Corgea 

Practical guidance for improving signal-to-noise ratio in traditional
scanning workflows. 

 Open Source SAST Tools 

SonarQube –
Popular open-source platform for continuous code quality and security
analysis. 

Semgrep -
Lightweight, rule-based SAST tool with customizable pattern-matching. 

CodeQL (GitHub) -
Semantic code analysis engine that powers GitHub's security alerts. 

Brakeman -
Static analysis tool for Ruby on Rails applications. 

Bandit -
Security linter for Python codebases. 

 Open Web Application Security Project (OWASP) 

OWASP Top 10 – Web Application Security Risks (2021) 

The most critical web app security risks, including Broken Access
Control and Insecure Design. 

OWASP API Security Top 10 (2023) 

The definitive guide to the top risks facing modern API architectures.

https://www.gartner.com/en/information-technology/glossary/static-
application-security-testing-sast

https://www.parasoft.com/blog/false-positives-in-static-code-analysis/

https://corgea.com/Learn/how-to-reduce-false-positives-in-sast

https://github.com/SonarSource/sonarqube

https://github.com/semgrep/semgrep

https://github.com/github/codeql

https://github.com/presidentbeef/brakeman

https://github.com/PyCQA/bandit

https://owasp.org/www-project-top-ten/

https://owasp.org/API-Security/editions/2023/en/0x11-t10/

https://www.gartner.com/en/information-technology/glossary/static-application-security-testing-sast
https://www.gartner.com/en/information-technology/glossary/static-application-security-testing-sast
https://www.parasoft.com/blog/false-positives-in-static-code-analysis/
https://corgea.com/Learn/how-to-reduce-false-positives-in-sast
https://github.com/SonarSource/sonarqube
https://github.com/semgrep/semgrep
https://github.com/github/codeql
https://github.com/presidentbeef/brakeman
https://github.com/PyCQA/bandit
https://owasp.org/www-project-top-ten/
https://owasp.org/API-Security/editions/2023/en/0x11-t10/

Pg 16

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

1618

1619

1620

1621

1622

1623

1624

1625

1626

1627

1628

1629

1630

1631

1632

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

1644

1645

1646

1647

1648

1649

1650

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

Ghost Report: Exorcising the SAST Demons

 Appendix A: GitHub Search Queries 

To identify real-world, actively maintained repositories representative of
typical development practices, we used the GitHub Repository Search API
with targeted queries. Each query was crafted to match repositories using
a specific language and framework, while filtering out inactive, trivial, or
template repos. 

The filters included�
� Language: to scope the search to relevant ecosystem�
� Size >500KB: to exclude trivial/demo project�
� Pushed after 2023-01-31: to ensure recent activit�
� Stars ≥1: to focus on public code with some adoptio�
� Archived = false / Template = false: to eliminate non-active project�
� Sorted by stars descending: to prioritize more popular and active repos

Note: These queries were executed using the GitHub API at the time of
research (early 2025). Due to ongoing code activity on GitHub, exact result
counts may vary if repeated at a later date.

Go + Gin (SQL Injection)

Python + Flask (Command Injection)

PHP + Laravel (Arbitrary File Upload)

gin language:Go size:>500 pushed:>2023-01-31 stars:>=1 template:false
archived:false sort:stars-desc

flask language:Python size:>500 pushed:>2023-01-31 stars:>=1
template:false archived:false sort:stars-desc

laravel language:PHP size:>500 pushed:>2023-01-31 stars:>=1
template:false archived:false sort:stars-desc

E N D O F R E P O R T

